On the Multiplicative Order of Fn+1/fn modulo Fm

نویسندگان

  • Takao Komatsu
  • Florian Luca
  • Yohei Tachiya
چکیده

Here, we show that if s �∈ {1, 2, 4} is a fixed positive integer and m and n are coprime positive integers such that the multiplicative order of Fn+1/Fn modulo Fm is s, where Fk is the kth Fibonacci number, then m < 500s2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Quantum Addition Rules

The quantum integer [n]q is the polynomial 1+q+q+ · · ·+q. Two sequences of polynomials U = {un(q)}∞n=1 and V = {vn(q)} ∞ n=1 define a linear addition rule ⊕ on a sequence F = {fn(q)}∞n=1 by fm(q) ⊕ fn(q) = un(q)fm(q)+vm(q)fn(q). This is called a quantum addition rule if [m]q⊕[n]q = [m + n]q for all positive integers m and n. In this paper all linear quantum addition rules are determined, and a...

متن کامل

On Isomorphism Theorems of Fn -Polygroups

In this paper, the notion of fuzzy n-polygroups (Fn -polygroups) is introduced and some related properties are investigated. In this regards, the concepts of normal  F-subpolygroups and homomorphisms of Fn-polygroups are adopted. Also, the quotient of Fn-polygroups by defining regular relations are studied. Finally, the classical isomorphism theorems of groups are generalized to Fn-polygroups p...

متن کامل

Real Analysis Chapter 6 Solutions Jonathan Conder

3. Since Lp and Lr are subspaces of CX , their intersection is a vector space. It is clear that ‖ · ‖ is a norm (this follows directly from the fact that ‖ · ‖p and ‖ · ‖r are norms). Let 〈fn〉n=1 be a Cauchy sequence in Lp ∩ Lr. Since ‖fm − fn‖p ≤ ‖fm − fn‖ and ‖fm − fn‖r ≤ ‖fm − fn‖ for all m,n ∈ N, it is clear that 〈fn〉n=1 is a Cauchy sequence in both Lp and Lr. Let gp ∈ Lp and gr ∈ Lr be the...

متن کامل

ar X iv : m at h / 03 10 00 5 v 1 [ m at h . N T ] 1 O ct 2 00 3 QUANTUM INTEGERS AND CYCLOTOMY

A sequence of functions F = {fn(q)}∞ n=1 satisfies the functional equation for multiplication of quantum integers if fmn(q) = fm(q)fn(qm) for all positive integers m and n. This paper describes the structure of all sequences of rational functions with coefficients in Q that satisfy this functional equation. 1. The functional equation for multiplication of quantum integers Let N = {1, 2, 3, . . ...

متن کامل

Divisibility Properties by Multisection

The/?-adic order, vp(r), of r is the exponent of the highest power of a prime/? which divides r. We characterize the/?-adic order vp(Fn) of the F„ sequence using multisection identities. The method of multisection is a helpful tool in discovering and proving divisibility properties. Here it leads to invariants of the modulo p Fibonacci generating function for p ^ 5. The proof relies on some sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013